

Mathematics Methods Units 3,4 Test 2 2018

Section 1 Calculator Free Applications of Calculus

STUDENT'S NAME

SOLUTIONS

DATE: Thursday 5 April

TIME: 30 minutes

MARKS: 33

INSTRUCTIONS:

Standard Items:

Pens, pencils, drawing templates, eraser

Questions or parts of questions worth more than 2 marks require working to be shown to receive full marks.

1. (4 marks)

Determine the equation of the tangent to the curve $y \sin x = x$ at the point $\left(\frac{\pi}{2}, \frac{\pi}{2}\right)$.

$$y = \frac{s}{\sin x}$$

$$y \Big|_{x = \frac{1}{2}} = \frac{1 - 0}{1^2}$$

$$\begin{pmatrix} \overline{11} & \overline{11} \\ \overline{2} & \overline{2} \end{pmatrix} \qquad \overline{11} = \frac{\overline{11}}{2} + C$$

2. (9 marks)

(a) Determine each of the following (do not simplify)

(i)
$$\frac{d}{dx} \frac{x^2}{e^{\sin 3x}} = \frac{2xe^{-\frac{2}{x}} \cdot 3\cos 3x}{2\sin 3x}$$
 [3]

(ii)
$$\frac{d}{dx}e^{-x}(\sin 2x - \tan 2x)$$
 [3]
= $-e^{-x}(\sin 2x - \tan 2x) + e^{-x}(2\cos 2x - \frac{2}{\cos^2 2x})$

(b) Given
$$f(x) = \int_{x}^{1} (3-t)^{\frac{5}{2}} dt$$
 determine $f'(-1)$.

$$f'(x) = -\frac{d}{dn} \int_{1}^{x} (3-t)^{\frac{5}{2}} dt$$

$$= -(3-x)^{\frac{5}{2}}$$

$$f'(-1) = -(4)^{\frac{5}{2}}$$

$$= -32$$

- 3. (12 marks)
 - (a) Determine each of the following

(i)
$$\int (e^{x} + e^{-x})^{2} dx$$
 [3]
=
$$\int e^{2x} + 2 + e^{-2x} dx$$

=
$$\frac{e^{2x}}{2} + 2x - \frac{e^{-2x}}{2} + c$$

(ii)
$$\int 3e^{1-6x} + e \, dx$$
 [3]
$$= \frac{3}{-6} \int -6 \, e^{1-6x} \, dx + \int e \, dx$$

$$= -\frac{1}{2} e^{1-6x} + ex + c$$

(b) (i) determine
$$\frac{d}{dx}x\cos 2x$$
 [3]
$$= \cos 2x - 2x \sin 2x$$

(ii) use the result of (ii) to determine
$$\int 2x \sin 2x \, dx$$
 [3]
$$\int (\cos 2x - 2x \sin 2x) \, dx = x \cos 2x$$

$$\int \cos 2x \, dx - x \cos 2x = \int 2x \sin 2x \, dx$$

$$\int \cos 2x \, dx - x \cos 2x + c = \int 2x \sin 2x \, dx$$

4. (8 marks)

The graph of y = f(x) is shown below. The size of the area of the two parts enclosed between the curve and the x-axis is shown on the graph.

Determine

(a)
$$\int_0^3 f(x) dx - 9$$
 [1]

(b)
$$\int_0^3 |f(x)| dx$$
 [1]

(c)
$$\int_{1}^{0} f(x) dx = -\int_{0}^{1} f(x) dx$$
 [2]

(d)
$$\int_{1}^{3} (2f(x)+3) dx = 2 \int_{1}^{3} f(5t) + \int_{1}^{3} 3 dx$$

$$= 2 \left(-12\right) + \left(3\pi\right)_{1}^{3}$$

$$= -24 + 9 - 3$$

$$= -18$$

Mathematics Methods Units 3,4 Test 2 2018

Section 2 Calculator Assumed **Applications of Calculus**

STUDENT'S NAME

DATE: Thursday 5 April

TIME: 20 minutes

MARKS: 22

INSTRUCTIONS:

Standard Items:

Pens, pencils, drawing templates, eraser

Special Items:

Three calculators, notes on one side of a single A4 page (these notes to be handed in with this

assessment)

Questions or parts of questions worth more than 2 marks require working to be shown to receive full marks.

5. (6 marks)

> Scientists are studying a population of endangered small mammals in a protected environment. They conclude the population is increasing at a rate of given by $B'(t) = 5.2e^{0.4t}$ where t is the number of weeks since the study began.

What is the change in the population in the fourth week? (a) [3] NET CHANGE = \int 5.2 e 0.4 t dt

= 21 HAMMALS

When the study began there were 500 of these mammals. The study will conclude when (b) the population reaches 2000. When will this occur? [3]

 $\int_{0}^{x} 5.2e^{0.4t} dt = 1500$

x = 11.9 ie DURING 12 H WEEK

6. (6 marks)

In the graph shown below, Q is the area enclosed by the graphs of y = x and $x = 6y - y^2$. P is the area bounded by the two graphs and the y-axis

Calculate

(a) the size of area Q
$$y = 6y - y^{2}$$

$$0 = 5y - y$$

$$0 = y(5 - y)$$

$$4 AREA_{Q} = \int_{0}^{5} 6y - y^{2} - y dy$$

$$= \frac{125}{6}$$

(b) the size of area P

$$AREA_{p} = \int_{0}^{6} 6y - y^{2} dy - \frac{125}{6}$$
 $= 36 - \frac{125}{6}$
 $= \frac{91}{6}$

7. (4 marks)

Two of the fission products of an explosion are found to decay according to the laws

$$\frac{dM_1}{dt} = -k_1 M_1$$
 where $e^{-k_1} = \frac{1}{4}$
 $\frac{dM_2}{dt} = -k_2 M_2$ where $e^{-k_2} = \frac{1}{2}$

If the initial ratio $\frac{M_1}{M_2} = 3$ what is the ratio after 6 days?

$$M_{1} = (M_{1})_{o} e^{-k_{1}t}$$
 $M_{2} = (M_{2})_{o} e^{-k_{2}t}$
 $M_{1} = (M_{1})_{o} (\frac{1}{2})^{t}$
 $M_{2} = (M_{2})_{o} (\frac{1}{2})^{t}$

AFTER 6 DAYS

$$\frac{M_{1}}{M_{2}} = \left(\frac{M_{1}}{M_{5}}\right)_{0} \frac{\left(\frac{1}{4}\right)^{6}}{\left(\frac{1}{2}\right)^{6}}$$

$$= 3. \frac{\left(\frac{1}{4}\right)^{6}}{\left(\frac{1}{2}\right)^{6}}$$

$$= \frac{3}{64}$$

8. (6 marks)

A continuous function f(x) is increasing on the interval 0 < x < 3 and decreasing on the interval 3 < x < 6. Some of its values are given in the table below.

x	Q	1	2	3	4	5	6
f(x)	5	16	27	32	25	0	– 49

The function F(X) is defined, for $0 \le x \le 6$, by $F(x) = \int_0^x f(t)dt$.

At which value of x in the interval $0 \le x \le 6$ is F(X) greatest? Justify your answer. (a) [2]

(b) At which value of x in the interval $0 \le x \le 6$ is F'(x) greatest? Justify your answer. [2]

$$f'(x) = f(x)$$

IT IS AN INCREASING FUNCTION UP TO X = 3.

Use the values of f(x) in the table to show that $48 \le F(3) \le 75$. (c)

UNDER ESSIMATE $\leq f(3) \leq OVER$ ESSIMATE

$$5 + 16 + 27 \le F(3) \le 16 + 27 + 32$$

 $48 \le F(3) \le 75$

$$48 \le F(3) \le 75$$